Young adult chondrocytes proliferate rapidly and produce a cartilaginous tissue at the gel-media interface in agarose cultures.

نویسندگان

  • Nicolas Tran-Khanh
  • Anik Chevrier
  • Viorica Lascau-Coman
  • Caroline D Hoemann
  • Michael D Buschmann
چکیده

Primary chondrocytes cultured in agarose can escape the gel, accumulate at the interface between agarose and the culture medium, and form an outgrowing tissue. These outgrowths can appear as voluminous cartilage-like nodules that have never been previously investigated. In the present study, bovine articular chondrocytes from three age groups (fetal, young adult, aged) were seeded and cultured in agarose to test the hypothesis that hyaline-like cartilage outgrowths develop at the interface by appositional growth, in an age-dependant manner. Macroscopic appearance, cell content, cell division, cytoskeletal morphology, and extracellular matrix (ECM) composition were analyzed. Fetal chondrocytes produced a fibrous interfacial tissue while aged chondrocytes produced ECM-poor cell clusters. In contrast young adult chondrocytes produced large cartilaginous outgrowths, rich in proteoglycan and collagen II, where cells in the central region displayed a chondrocyte morphology. Cell proliferation was confined to the peripheral edge of these outgrowths, where elongated cell morphology, cell-cell contacts, and cell extensions toward the culture medium were seen. Thus these voluminous cartilaginous outgrowths formed in an appositional growth process and only for donor chondrocytes from young adult animals. This system offers an interesting ability to proliferate chondrocytes in a manner that results in a chondrocyte morphology and a cartilaginous ECM in central regions of the outgrowing tissue. It also provides an in vitro model system to study neocartilage appositional growth.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Induction and prevention of chondrocyte hypertrophy in culture

Primary chondrocytes from whole chick embryo sterna can be maintained in suspension culture stabilized with agarose for extended periods of time. In the absence of FBS, the cells remain viable only when seeded at high densities. They do not proliferate at a high rate but they deposit extracellular matrix with fibrils resembling those of authentic embryonic cartilage in their appearance and coll...

متن کامل

High Quality of Infant Chondrocytes in Comparison with Adult Chondrocytes for Cartilage Tissue Engineering

BACKGROUND Tissue engineering is used for the treatment of many diseases, and the ideal cell source for cartilage tissue engineering is chondrocytes. The main limitation of chondrocyte is the low number of cells in cartilage tissue engineering. This study investigated a suitable cell source with high proliferation rate to obtain a large number of chondrocytes. METHODS Adult cartilage t...

متن کامل

A Review Study: Using Stem Cells in Cartilage Regeneration and Tissue Engineering

Articular cartilage, the load-bearing tissue of the joint, has limited repair and regeneration ability. The scarcity of treatment modalities for large chondral defects has motivated researchers to engineer cartilage tissue constructs that can meet the functional demands of this tissue in vivo. Cartilage tissue engineering requires 3 components: cells, scaffold, and environment. ...

متن کامل

Scaffold-free approach produces neocartilage tissue of similar quality as the use of HyStem™ and Hydromatrix™ scaffolds

Numerous biomaterials are being considered for cartilage tissue engineering, while scaffold-free systems have also been introduced. Thus, it is important to know do the scaffolds improve the formation of manufactured neocartilages. This study compares scaffold-free cultures to two scaffold-containing ones. Six million bovine primary chondrocytes were embedded in HyStem™ or HydroMatrix™ scaffold...

متن کامل

Study of Human Chondrocyte Redifferntiation Capacity in Three-Dimensional Hydrogel Culture

Objective(s) Articular cartilage tissue defects cannot be repaired by the proliferation of resident chondrocytes. Autologous chondrocyte transplantation (ACT) is a relatively new therapeutic approach to cover full thickness articular cartilage defects by in vitro grown chondrocytes from the joint of a patient. Therefore, we investigated the redifferentiation capability of human chondrocytes ma...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Connective tissue research

دوره 51 3  شماره 

صفحات  -

تاریخ انتشار 2010